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Non-trivial prefactors in adiabatic transition probabilities 
induced by high-order complex degeneracies 

Alain Joye 
Centre de Physique Theorique. CNRS Marseille, Luminy case 907, 13288 Marseille Cedex 9, 
F" 

Received 6 April 1993 

Abstract. The adiabatic limit of the transition probability for two-level systems driven by 
real symmetric time-dependent Hamiltonians is considered When the Hamiltonian depends 
analytically on time, the transition probability is governed, in simple cases, by a complex 
eigenvalue crossing point which is, generically, asquareroot branching point for theeigenvalues. 
In such a case, the transilion probability is given by the Dykhne formula, the reeently discovered 
geometric prefacwr being equal to one. In this paper we deal with the general situation where the 
relevant eigenvalue crossing point is a branching point of order n/2, n 2 I ,  for the eigenvalues 
and a zero of order m k 0 for ihe Hamiltonian itself. The analysis shows that the Dykhne 
formula must be completed by a novel prefaclor which depends on both n and m. In patlicular, 
this prefactor can W e  the value zero, in contrast to the geometrical prefactor. We also consider 
the case where the transition probability is governed by N complex eigenvalue crossing points of 
different orders nj and mi ,  j = I .  ._. , N. The end result displays an interference phenomenon 
between the individual prefactors similar to the case of generic eigenvalue crossing points nj = 1 
and mj = 0 considered earlier. 

1. Introduction 

The adiabatic limit of the time-dependent Schriidinger equation 

a 
at 

iE-$(f) = H(t)$(f) E -+ 0 

has been the object of renewed interest for several years now. The origin of this renewal 
of interest is the seminal paper by Berry [l] in which he showed that the adiabatic 
theorem of quantum mechanics could generate a phase factor of non-trivial geometric 
meaning. After the abstract formulation of the geometric content of this result by Simon 
[Z], several theoretical as well as experimental works were devoted to this geometric 
phase and its generalizations [3]. Another important aspect of the adiabatic theorem of 
quantum mechanics has also been recently reconsidered, namely the rigorous estimation of 
the (vanishing) transition probabilities between spectrally isolated subspaces. This aspect 
specialized to two-level systems is the main concern of this paper. Consider a two-level 
system driven by an analytic time-dependent Hamiltonian H ( f )  whose eigenvalues q ( t )  
and e*(!) are separated by a gap for any time t. It is known since the pioneering works 
of Landau [41, Zener [5 ]  and Dykhne [6], that the transition probability P(&) between 
the eigenvectors of the system over infinite time is exponentially small in the adiabaticity 
parameter E,  as E tends to zero. However, the asymptotic foxmula proposed in [4] and [6] 
for real symmetric Hamiltonians, known as the Dykhne formula, was rigorized much later 
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by Davis and Pechukas [7] and by Hwang and Pechukas [8]. This formula shows that in 
simple cases the transition probability is governed by one of the complex crossing points 
of the analytic continuations of the eigenvalues. i.e. points zj such that el(zj)  = ez(zj). 
Generically, the complex eigenvalue crossing points are square root branching points for 
the difference of the eigenvalues: 

el (z)  - eZ(z) = ( z  - z j P .  (1.2) 

If z1 is the relevant eigenvalue crossing, which is assumed to be generic, then the Dykhne 
formula reads 

It was pointed out recently by Berry [9] and Joye et a1 [lo] independently that the Dykhne 
formula (1.3) must be completed by a prefactor of the form exp(2h0} when applied to 
generic complex Hermitian two-level Hamiltonians. ?hi prefactor is geometric in nature 
and is given by the analytic continuation of the geometric phase mentioned above around the 
relevant complex eigenvalue crossing point. For real symmetric Hamiltonians, this prefactor 
reduces to 1, yielding back the familiar Dykhne formula for the transition probability. The 
geometric prefactor was measured successfully by Zwanziger et al [ 111 in a spin experiment. 

More general expressions for "(8) can be found in [12-151, whereas a phenomenon of 
interferences is studied in [16] when several eigenvalue crossing points govern the transition 
probability. Similar problems were also considered for more general systems [17,18] and 
the reduction of general problems to the study of two-level systems was legitimated in 1191. 
In particular, the so called Landau-Zener formula was rigorized in [20] and [21]. See also 
[221. 

The main purpose of this paper is to study the asymptotic of the transition probability for 
two-level systems driven by real symmetric Hamiltonians displaying complex eigenvalue 
crossing points of higher orders. This means that we consider the general behaviour (see 
hypothesis (iv)) 

el(z) - e&) N ( z  - ~1)"" n 2 1 (1.4) 

close to the relevant crossing point z1, instead of the generic square root behaviour (1.2). 
Let us give a heuristic description of the physically expected behaviour of the transition 
probability P(E) in this situation. Assume for the discussion that ZI is close to the real axis. 
Thus the two levels el ( t )  and ez(t) for real r become close to each other in a neighbourhood 
of z,. Now if n takes a larger value than 1, the levels will be close to one another on a 
larger region of the real axis. As a consequence, the transition between the levels should 
be enhanced and the transition probability should be increased. On the other hand, the 
Hamiltonian H ( z )  itself may possess a zero of high order at the degeneracy point ZI (1.4) 
of the levels: 

H ( z )  ( Z  - ZI)'". (1.5) 

(Then, necessarily 2m < n, see lemma 3.1.) This means that, although the levels are close 
to each other in that region, the coupling between them is very weak. As a consequence, the 
transition probability should be decreased. The asymptotic formula for ?(E)  in the adiabatic 
limit E + 0 must thus reflect the competition between these two conflicting effects. 
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Our study of this problem in the simple case described above of one relevant eigenvalue 
crossing point z1 characterized by the integers n and m, leads to the appearance of a non- 
trivial prefactor in the asymptotic formula for the transition probability (see corollary 2.1): 

The novel prefactor 4sin2(n(n - 2m)/2(n + 2)) is induced by the high-order complex 
degeneracy ZI and is not of geometrical origin. This prefactor reduces to 1 if z1 is a generic 
complex eigenvalue crossing (n = 1, m = 0). For a given order n of the degeneracy, it 
can take n/2 + 1 (respectively (n + 1)/2) different values depending on m, if n is even 
(respectively odd). Moreover, it describes correctly the competition described above: if we 
set m = 0, i.e. H(z1) # 0, we see that the exponential function is multiplied by a factor 
greater or equal to 1, which can get close to 4 if n is large. This is the behaviour expected 
for close levels and large coupling. In contrast, if we take for m the largest admissible 
value m = (n - I)/& assuming n to be odd, the prefactor is less or equal to 1 and can get 
close to 0 if n is large. This describes the effect of the weak coupling between the levels 
if the Hamiltonian is highly degenerate at the high-order complex degeneracy 6f the levels. 
Moreover, if n is even, the value m = n/2 yields a prefactor exactly equal to zero, and this 
for any value of n. This means that when the eigenvalue crossing is the consequence of a 
degeneracy of the Hamiltonian, the coupling between the levels becomes ineffective (to the 
leading order). For other intermediate values of m, the balance between the two extreme 
situations is described by the sine in the prefactor. Note that the prefactor is equal to 1 if 
m = j n  - 1 E N. Naturally, the exponential decay rate in (1.6) also depends on n. An 
explicit example displaying a non-trivial prefactor is studied in section 4. 

This result can be extended to the cases where the transition prohabiliy between the 
two levels is governed by several eigenvalue crossings zj, j = 1.2, . . . , N, each one being 
characterized by the integers nj and mj, (2mj < nj) defined as above (see conditions (iv) 
to (vi)). The end result for P(&) is given by the sum of the contributions of each individual 
eigenvalue crossing point (see theorem 2.1): 

where uj = i l  is determined explicitly. In such a case we have 

= - IhL" el(z) -eZ(z)dzI < 0 j = 1,2,. . . , N. (1.8) 

This formula generalizes (1.6) in the same way as the result of [16] generalizes the case 
of generic eigenvalue crossings considered in [lo]. As in the corresponding result of 1161; 
the main feature of (1.7) is that it takes into account the phases of the individual transition 
amplitudes which induce interferences in the asymptotic expression of P(E), as E --f 0. For 
a more detailed discussion of this phenomenon and numerical illustrations of it, we refer 
the reader to [16]. 
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The presence of a non-trivial prefactor in formula (1.6) was noticed by Solov'ev in 
[23,24]. However, the case m = 0 only is dealt with, so that the conflicting effects 
described above are not taken into account. Moreover, no estimates on the error terms are 
given in these works, as explicitly stated by the author. Finally, the same result can be 
obtained by using the concept of superadiabatic evolution [12,18,19] and by following the 
ideas presented in [12]. This approach was developed independently for the case m = 0 by 
Berry and Lim [Z]. 

A similar phenomenon, although less general, takes place in the study of the 
semiclassical limit of the stationary one-dimensional Schriidinger equation 

da 
- k2,,(o(x) + V(x)p(x)  = Ep(x)  as fi -+ 0 (1.9) 

when E z supxEo( V(x) .  Indeed, the mathematical structure of the computation of the above 
barrier reflection coefficient R f i )  and of the transition probability P(E) are quite similar, 
as noted in [4,&8]. Assuming that V is analytic, the role of the complex eigenvalue 
crossing points is played here by the complex turning points zj such that V(ZJ) = E .  
They are generically simple zeros of E - V ( z ) .  If z1 is the relevant generic turning 
point, the reflection coefficient is given by a decreasing exponential in l /h  with decay rate 
-4lhJ: d m d z l  [7,8]. When applied to this semiclassical context and assuming 
that z1 is a zero of order n 1 of E - V ( z ) ,  our analysis yields (see theorem 5.1) 

. .  . .  
The appearance of a prefactor for non-generic turning points was already recognized 
by Pokrovskii and Khalatnikov in 1961 [26]. Then this problem was reconsidered and 
generalized in [27-311. In particular, in [28] Berry used an original method in which R(h) 
is represented by a convergent multiple reflections series. However, no rigorous derivation 
of equation (1.10) can be found in the literature. Note that the prefactor here is entirely 
characterized by the order n of the zero of E - V ( z )  and is always greater than 1. This 
property reflects the fact that the semiclassical problem depends on one function only, 
E - V ( z ) ,  whereas the adiabatic problem is determined by two independent functions Bl(z) 
and B&) (see below). Although formula (1.10) is not new in this context, we transpose 
our rigorous analysis of the adiabatic problem to the semiclassical problem in section 5 to 
provide explicit error bounds which are lacking in the eeatments quoted above. Again, the 
result can be generalized to cases where the reflection coefficient is determined by several 
turning points of arbitrary orders (see theorem 5.1). 

The plan of the paper is as follows. We give in section 2 a precise formulation of our 
main result in the adiabatic context. Section 3 contains the proof of the theorem and we deal 
with an explicit example in section 4. The application of our analysis to the semiclassical 
computation of the above barrier reflection coefficient is briefly exposed in section 5. 

2. Main result 

We consider the singular limit E + 0 of the equation 
a 
at 

i&-@(t) = H ( t ) @ ( t )  t E R  
where the Hamiltonian H ( t )  is a 2 x 2 real symmetric matrix 

We assume the following regularity conditions. 
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(i) The Hamiltonian H ( t )  is analytic in a strip S, = [z = t + is E Cllsl < a), 
(ii) There exist two non-zero real symmetric matrices H(+co)  such that 

for some LY z 0. 

Moreover, we suppose that the eigenvalues of H ( t ) ,  q ( t )  and e2(t), are separated by a 
gap during the whole evolution: 

(iii) 

e&) -el@) > g > 0 Vt E R. 

The eigenvalues are given on the real axis by the expressions 

where 

is stric in S, U reas i an continuations .  positive. The function p (  , an . .. 
ej(z) of the eigenvalues ej(t) are generally multivalued in S,,. The complex eigenvalue 
crossings give rise to branching points for ej(z) which coincide with the zeros of p ( z ) ,  the 
analytic continuation of p( t ) .  We select on the real axis a set of normalized instantaneous 
eigenvectors pj (t) 

H(t)pj(t) = ej(t)pj(t) t E R, j = 1.2 (2.7) 

by requiring that 

d 
(Vj(t)lzUlj(t)) E 0 i = 192 (2.8) 

((.I.) being the usual scalar product in U?). It is a standard result that these vectors are 
unique up to an overall phase factor (see [32]). Moreover, their analytic continuations, pj (z), 
are multivalued in Sa, with singularities at the eigenvalue crossings, as shown explicitly in 
[IO] and 1161.' Our condition (ii) insures the existence of the limits qj(*cu), j = 1,2. 

We expand the solution @ ( t )  of (2.1) on the eigenvectors just defined as 

2 

j=1 
+ ( t ) = ~ q ( t ) e x p (  - i / 'e j (s)ds)pj( t )  E o  t ER. 

The unknown coefficients cj(t) satisfy then the equation 
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where 
I 1 

A @ )  = l ( e l ( 4  - ez@N ds = - 2 1  m d s  

akj(t) = -(qk(t)l$pj(t)) f E R. (2.12) 

(2.11) 

By condition (ii) again, the limits c j ( i w ) ,  j = 1.2, exist We consider a solution +(t)  
which, as t + -m, is asymptotically an eigenstate of H(-w) associated with e l ( - m ) ,  
i.e. we choose 

q(-w) = 1 cz(-m) = 0. (2.13) 

We want to compute the probability to find the system at t = +m in the eigenstate associated 
with ez(+w), i.e. the transition probability 

? ( E )  = Icz(+m)lZ. (2.14) 

As noted in the introduction, the transition probability is governed the complex eigenvalue 
crossings of the Hamiltonian. In this paper we consider the general situation characterized 

(iv) The set X of zeros of p ( z )  in S. consists of 2n interior points z1, Z i ,  zz. Zj, . . ., 
zn, zn, where zk and 5 are zeros of order nr 2 1, k = 1,. . . , n (Imp z 0 by convention). 

Moreover, the number of vanishing derivatives of the Hamiltonian at the eigenvalue 
crossing Zk is of importance. Hence we further introduce: 

(v) Let mk 2 0 be the order of a considered as a zero of H(z) .  We have 2mr < nk. 
The inequality 2mk < nk is always satisfied, as shown in lemma 3.1. 
As usual in this type of analysis, the Stokes lines of the problem play an important role. 

A(z)  = - 2 l m d s  (2.15) 

where the path of integration from 0 to z belongs to S.\X. This function has branching 
points at the points of X and is defined by continuity if z E X .  The Stokes lines of the 
problem are defined by the set of level lines 

(2.16) 

(Confusion should be avoided here between our definition (2.16) of Stokes lines and the 
other convention consisting in calling the level lines Re A(z)  = Re A&) Stokes lines.) 
There are nk + 2 branches of Stokes lines emanating from a zero w of p ( z )  of order np. 
as verified by a local argument (see e.g. [33]). We now state our last hypothesis which 
concerns the global behaviour of the Stokes lines: 

(vi) There exist N eigenvalue crossings z1.. . . , Z N  and a Stokes line t H y(t), t E R, 
in S. which passes through z1, . . . , Z N  and satisfies 

lim Rey(t)=*m . supIImy(t) l<a.  (2.17) 

This assumption may look merely technical at first sight, however it allows the N eigenvalue 
crossings governing the transition probability to be determined, which is obviously an 
essential issue. For a detailed investigation of this important aspect and a geomehic 
interpretation of it, we refer the reader to [IO]. 

by 

- 

They are defined through the analyticcontinuations of the function (2.11), 

h A ( z )  = Im A(z&) Vz E Sa, k = 1, . . . , n. 

t+*w IER 
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Theorem 2.1. Let H(t)  be a real symmetric 2x2 (traceless) matrix satisfying conditions (i) 
to (vi) and let +(r )  be a solution of the Schrodinger equation (2.1). Then, there exist 
constants E* > 0 arid p 0 such that the transition probability P(E) defined by (2.13) and 
(2.14) is given for any E c E* by 

(2.18) 

where A(zj) = 2 el(z) - eZ(z) di, q = &l and Zmj < nj. 

Remarks. 
e The value of cj is determined by the phase of (dml/dzmj)B1(zj), see lemma 3.1. 
e An explicit value for the power p is given in lemma 3.3. However, as noticed in 

[16], this power is not the optimal one and the error term is probably much smaller than 
the estimate obtained here. 

o Since the relevant eigenvalue crossings are located on the same Stokes line y ,  we 
immediately have, for all j = 1, . . . , N ,  

ImA(zj) =ImAQ) = -lImA(z~)l < 0. (2.19) 

o The assumption (ii) can be weakened a little, see the example and [15]. 
o If the boundary conditions (2.13) are reversed, the transition probability ?(E)  = 

Icl(w)[z  is given by the same formula, as noted in [16]. 

Setting N = 1 we have the immediate: 

Corollary 2.1. Under the same hypotheses as in theorem 2.1, and with the notation n1 
ml = m, there exist constants E* > 0 and p > 0 such that 

n, 

for any E < E*. 

This yields the prefactor discussed in the introduction. 

3. Proof of the result 

We show theorem 2.1 by following a direct generalization of the method used in [ 161. Let us 
briefly recall the strategy. Using the analyticity of the problem, we consider the differential 
equation (2.10) for the coefficients along the Stokes l i e  y of condition (vi), rather than on 
the real axis, except in the neighbourhood of the singular points. The singularities of this 
equation are precisely the eigenvalue crossing points which are located on y .  Around these 
singullarities we solve exactly a comparison equation which captures the dominant features 
of the equation. Then, we asymptotically match this approximation with the solution of 
(2.10) obtained along the Stokes line, which we control by using an integration by parrs. 
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Let us recall some general facts which are proven in [lo] and [16], under conditions (i) 

The simply connected domain 12 defined by its border aQ = y UT contains no point 

The functions A(t) and akj(t) defined in (2.11) and (2.12) possess single-valued 

The expression of the couplings q ( z )  in terms of the functions Bk(z) reads in our 

to (vi): 

of X in its interior. 

analytic continuations A(z) and akj(z), Vz E Q\X. 

case 

provided p(z)Bl(z) # 0 and with the notation ‘ = d/dz (lemma 3.1 of [16]). Moreover, we 
can exchange the indices of the functions &(z) in this formula. 

The coefficients cj(t) thus admit single-valued analytic extensions cj(z)  in Q\X such 
that 

These properties allow us to consider the analytic continuation of the system (2.10) 

c l ( Y ( - ~ ) )  = 1 cz(v(-” = 0 (3.3) 

along y(t) in particular, with boundary conditions 

(3.4) 

3.1. Study of the singularities 

Let 
and m 0 such that 

denote any one of the points of X belonging to y ,  characterized by the integers n 1 

P(Z) = r(zo)(z - a)n + W z  - ZOY+’) (3.5) 

H(z) = h(zo)(Z - + O((Z - z~)”’+’) hko) # 0. (3.6) 

r(a)  # 0 

Lemma 3.1. 
(a) The integers n and m are such that 2m < n. 
@) Using the notation f(”(z) (dm/dzm)f(z), we have the behaviours 

(i) if 2m < n 

(3.7) 

(3.8) 

for z in a neighbourhood of a. 
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Remarks. 

introduction on the strength of the couplings akj between the levels. 

to estimate the transition probability in this case. 

Proof. It follows from (3.6) that one of the functions Bj(z) at least has a zero of order m 
at ZO. Hence we can assume that 

The factor n - 2m describes quantitatively the conflicting effects discussed in the 

e If n - 2m = 0, the couplings are analytic at zo which allows us to use a simple method 

(3.9) 

(3.10) 

Similar expressions hold for &(z) and B:(z) with IBp’(zo)l 2 0, hence 2m 6 n is a 
consequence of (3.5). 

Assume that 2m e n. Then we have 

(3.11) 

so that 

Thus we can write 

(3.12) 

(3.13) 

with 

Bp(Z0) = ic70B;~)(~). (3.14) vmv 
It remains to insert these expressions in (3.1) to obtain assertion (i). 

If 2m = n, then ] B ~ ’ ” ( ~ ) l  2 0 and (3.1) again yields the result. U 

Let us segment the Stokes line y in several parts containing no eigenvalue crossing 
points in the following way. We introduce z: E y such that z: are in the neighbourhood 
of zj E X and 2,: is first met when we follow y from -ca to +w, see figure 1. Let us 
also define the points $ E y which are a finite distance away from zj and such that (,? is 
between z; and zGl, and {: = (Gl, as in figure 1. We set (; = -co and (,’ = +W. The 
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Figure 1. Definition of h e  points z: and 5:. 

segment of Stokes line y delimited by <: and <j' is denoted by yj, whereas the segment 

We consider the system (2.10) along the portion of Stokes line y; delimited by <; and 
6, (the index 0 still denoting any index). Let us estimate c&) as functions of cj(<;). 
In order to do so we work with the more appropriate variables 

delimited by <j" and z; is denoted by yj L . 

6(z)  = c1(z) G(z) = exp [ kA(z0)) CZ(Z) (3.15) 

satisfying the equations 

for any < and z in Q. Performing an integration by parts we have 

(3.17) 
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Figure 2. The analytic cantinuation of x(z) inside 0. 

3.2. Case 2m e n 
From now on we assume that 2m < n. The case 2m = n is treated below. Using lemma 3.1 
and (3.3, if z is close to z; we can find constants independent of j and z (whicli we denote 
generically by K )  such that 

(3.18) 

As z E y;, we can assume that the above estimates hold for any such z. We set 
11$Il = supzEy,- lG(z)l and S = Iz; - zol so that using the property 

Im A(z) = Im A h )  VZ E y (3.19) 

we obtain for all z E y; 
E 

lG(Z)l < l6(<;)l + K g ( n + 2 M z  (IlGll + I l a )  

l%Z)l ,< /%<;)I + K g ( " + ~ , / 2  (IlGll + IIGII). 

Il6llf Ilc*?ll < l 6 (< f ) l+  IG(<;)l + 2 K g ( " + ~ , / 2  (Il6ll + llEll)(.. 

(3.20) 
E 

Hence, taking the supremum over z E y; and summing the resulting inequalities, we get 

(3.21) 
E 

for another constant K .  Coming back to (3.17), we obtain under these conditions and for 
allzEy; 

E 
I$(Z) - 6(<;)1 < K m  (l%(<;)l + I%<f)l). 

We can perform the same type of analysis on the segment y: delimited by 
Setting 6 = lz: - 201 we obtain similarly 

(3.23) 

and $. 

(3.24) 
E 

I 6 (Z )  - 6(Z$)l  6 K g o l z  (lG(z,+)l+ lE(z,+)l) 

for all z E yo+. 
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3.3. Comparison equation 

We now tum to the determination of the comparison equation valid in the neighbourhood 
of the singularity 10. Its exact solution will allow us to express the coefficients G(z,') as 
functions of G(z;), up to errors which we master below. These coefficients satisfy 

(3.25) 

Let us introduce a suitable new variable x by 

EX S $2)  - A(Z0) = -2[ mdZ' (3.26) 

which is well defined in the neighbourhood of 20. Note that x depends on both E and zo 
and that this change of variables is one to one if z E Q. By definition, x is real if z E y 
and since Im A(z0) c 0, we have 

X ( Z T )  5 0 and x(z$) = eh[x(z$)[ c 0 (3.27) 

when the analytic continuation of x(z)  from z; to z: is performed along a path belonging 
to Q, see figure 2. In terms of the variable x ,  the system (3.25) reads 

d ,  & 
--C2(Z(X)) = - dx a21 ( z (x ) )  expI-i.lc?(z(x)) 

2%" 
which we rewrite in matrix notation as 

d 
dx 

Now, using (3.5) 

--e(z(x)) = D(x, E)E(Z (X) ) .  

so that ' "  , 

. ,  
Z ;Zo = o((EX)2""+z'). 

These expressions and lemma 3.1 yield 
, .  

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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Keeping the leading term of this expression only, we define our comparison equation by 

d ,  iu& - &a) e'" 
2(n+2) x 

-c1 ( x )  = + 
dx 

d ,  iu& - 2m) 
-c&) = - -C; (X) 
dx 2(n+2) x 

-G(X) 
(3.33) 

or, in matrix notation, 

(3.34) d -  
dx 
-c(x) A(x)E(x). 

We note for later reference that the difference between the approximate system (3.33) and 
(3.29) is given by the matrix B(x,  E )  defined by 

D(x, E )  A(x) + B(x,  E). (3.35) 

As a consequence of the above considerations, the following estimates hold 

(3.36) 

(3.37) 

where K is some constant 
We h o w  from (3.23) and (3.24) that we can control the solution of (3.29) along y,' 

up to errors of order &/8"+*)/", where 6 = 1.0' -a[ = O((EX)~/~"+~),  i.e. errors of order 
1/1x1. Hence we shall impose the matching condition 1x1 + 00 and  EX^ + 0. 

In order to compute 40, j = 1,2, we convert the system (3.33) to a second-order 
differential equation for C;(x) ,  by eliminating &(x) .  Setting 

~ 

~ 

(n - 2m) 
d =  > O  

2(n + 2) 

we obtain the following equation for C;(x)  

(3.38) 

(3.39) 

This equation is exactly the same as the one obtained for the value d = 1/6 in [16], 
equation (5.1). Following [16] we write the solution of (3.39) as 

f ( x )  = $xdw(-ix) (3.40) 

where the function w(y) satisfies 

YW"(Y) + (b - Y)w'(Y)  -MY)  0 (3.41) 

with a = d + 1, b = 2d + 1. This equation has been the object of many studies and its 
solutions are well known [34]. We list below the properties of interest for our problem 1341 
and [16]. 
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'nvo linearly independent solutions of (3.41) are given by 

W I @ ,  b, Y) = M(u, b, Y) 

W Z ( U ,  b, y) = ~ ' - * M ( u  - b + 1,2 - b, y )  
(3.42) 

where 

r ( b )  I '(u+n)y" 
r (u )  n=O r ( b  +n) n! 

M ( a , b , y ) = - x  ~ - b#0,-1,-2 ,... (3.43) 

is single valued and is called the Kummer's or confluent hypergeometric function. 
The asymptotic behaviours of W I  and wz when 

IYI --f 00 - ;7c c argy c ;7c (3.44) 

are given by 

where 

w ~ ( u ,  b, y) = 

w?(u, b ,  y) = 

1 - U(U - b + 
(3.45) 

m The derivatives of W I  and wz can be expressed as 

Finally, we have the symmetry relations 

wl(u,b,e'"y) =e-Ywl(b-n,b,y) 

W Z ( U ,  b, emy) = en(l-b)e-ywz(b - a,b, y). 

Hence, making use of (3.40). the first equation (3.33) and (3.46), we can write 

C(X)  = e ' x ( p ~ ~ w i ( d + 1 , 2 d +  1,-ix)+qxdw2(d+ 1,2d+I,- in))  

iXd+'Wi(d + 1 , 2 d + l ,  -iX) +dxdW1(d+ 1,2d+ 1 ,  -ix) 

1 -1- + x"'w*(d + 2,2d +2, -ix) . 
2d+ 1 

+ q  ixdflwz(d + 1,2d + 1, -ix) - dxdw2(d + 1,2d+ 1, -ix) I 

(3.47) 

(3.48) 

1 - d  
1 -2d +- xdwz(d+ 1, 2d, -ix) 
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where p and q are constants. Note that the condition 2m c n implies that 1 - 2d # 0. 
Let us compute the asymptotic of q ( x )  as 1x1 + 00. As noted earlier, x is real and 
positive on y;. Hence arg(-U) = -n/2 on y; and we can apply the expansion (3.45) 
of wj for x large and positive. After some straightforward algebra and with the identity 
r (z  + 1) = zr(z) we obtain 

(3.49) 

as x + +m. o n  y z ,  x = eklxl so that the expansions (3.45) are useless. n u s  we 
consider the symmetry relations (3.47) to write for x > 0 

6(einx) = pekdxdwl(d, 2d + 1, -U) + qeTkdxdwZ(d, 2d + 1, -U) 

ix ' ( [ wl(d .2d+1, - ix)+dxdwl(d ,2d+1, - ix)  
- cz(e x )  = ----e= p i f d  - ~ d + '  

rad 

WI (d, 2d + 2, -ir) + iPXd+1 d +  1 
2 d f  1 (3.50) 

wz(d, 2d + 1, -U) - dXdwz(d, 2d + 1, -U) 

1 - d  -- xdwz(d - 1,2d, -U) 1 -2d 

and we can apply formulae (3.45) to compute the asymptotics as x + +W. We get similarly 

(3.51) 

Thus we have: 

Lemma 3.2. Let E ( x )  be a vector solution of (3.34) whose asymptotics as x + +m is 
given by 

(3.52) 

Then 

(3.53) 
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where 

(3.54) 

Remark. 

is performed. 

semiclassical context. This is the reason why we keep on writing U;'. 

of corollary 2.1. 

Proof: By (3.49) and (3.51) we can write 

The matrix YO depends explicitly on the singular point a around which the analysis 

In the adiabatic context, U ,  = &l, so that U;' = uo. However, this is not true in the 

Replacing d by its value d = (n - 2m)/2(n + 2), we obtain the individual prefactor 

(3.55) 

where W ( x )  = W+ + O(l/x), 

and W(e"x) = W- + O(l/x), 

Thus, by hypothesis 

(:) = (w;'+ (:)) (( ;) + (:)) 
hence 

(3.58) 

(3.59) 

and we compute W- W;' = YO. 0 

3.4. Asymptoric matching 

We now turn to the matching of the asymptotics obtained for E(x) and the one given for 
&z) in (3.23) and (3.24). Let us determine the error made by replacing E by E in the 
neighbourhood of a. As in [161, we denote by U A ( X ,  xo) and U ( x ,  xo) the associated 
propagators defined by 

U;(X,XO) =A(x)Lla(x,xo) UA(XO,XO) =I 
U'(X ,  X O )  = (A(x )  + B ( x ,  &) )U(X,  xo) 

(3.60) 
U(XO, XO) = 1. 
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By the method of variation of the constant, we obtain the identity (see [16]) 
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u ( X , X o )  - UA(X,XO) = uA(X,s)B(s,E)u(S,Xo)dS. (3.61) s,' 
Consider the path consisting in the following three parts in the x plane 

a rectilinear part from xo to 1, xo > 1, 
a semicircular part from 1 to - 1 in the upper half plane, 
a rectiliieax part from -1 to -XO. 

We want to evaluate U(-xo, xo) - UA(-XO, xg) integrated along the path just described. 
We decompose 

u(-xO,xO) - uA(X0,xO) = (u(-xO, -1) - uA(-xO, -1))UA(-l, 1)uA(1*xO) 

f u(-XOq -1)(u(-1, 1) uA(-l, l ) )UA( l ,XO)  

+ U(-xO> -1)u(-1, 1)(U(l,XO) - oA(1,xO)) (3.62) 

and bound each term separately. For x and y on the same branch of Stokes line, i.e. 
x . y > 0, we have, b. standard estimates using (3.36) and (3.37), 

IIUA(X. Y)II < exp(dllnx/yl) 

~ ~ 

(3.63) 
IlU(x, y)II < exp(dl l n ~ l ~ l ) e x p I ~ ( l & ~ x l  '/("+*) + l~yl"("~")] < K exp(d1 lnx/yl) 

as IEX], I&yyI + 0, so that by (3.61) 

I IU (X ,  y) - uA(x, Y)II  < ~ e d ' ~ x ~ y ' ( ~ E x ~ z ~ ( n + z )  + IE~I"("+~'). (3.64) 

Along the path x(S) = e'@, B E [O, n], we get by similar methods 

]Iu(-l, 1) - uA(-l, 1)11 < K&zi(nt2). 

Gathering these estimates, we obtain from (3.62) 

Y(nt2 )  llu(-xO, XO) - U A ( X 0 ,  xO)II < Kx,"(&xO) 

a~ E + 0, xo + cu and EXO + 0. 
We can now determine explicitly the scaling l i t  whir 

formulae on the whole segment of Stokes line yo. Let us define 
matches 

q =  max nj 
j=1, .... N 

and assume that 

E(<;) = (;) + 0(&1'(@+2)). 

Setting 

&xu EX(Z;).= U((G - Zg)("+Z)/Z)) 

(3.65) 

(3.66) 

:se asymptotic 

(3.67) 

(3.68) 

(3.69) 
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we get from (3.23) 

since 

6 = 16 - .?,ol = U((&Xp”+2’) .  

At that point we use U, instead of U to compute &$). That is we consider 

and get from lemma 3.2 

We thus make an error which we estimate by (3.66) 

Ilr?(e’”xo) - E(e“xo)ll = o(x~(&xo)2/“+z’ ) .  

As 
2 n f 2 - h  2 2 U+-= < 1  and - >- 

n + 2  n + 2  n + 2  q + 2  

we have 

~ 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

Finally, we make use of (3.24) to compute e({,’), assuming that qe2/(q+2) --f 0, as E + 0. 
We obtain, with 

(3.77) 6 = Izo‘ - ZOl = 0( (EX0)2 / (”+2’ )  

E({;) = Yo (;) + 0(&’”q+2’) + O(xo&”(q+z)) + 0 - . (3.78) 
C O )  

At that point we impose that all error terms are of the same order, i.e. 

&l/(q+a = XOE2/(9+2’ = _, 1 
xo 

We thus find 

xo = &4/(9+2) 

which justifies our use of lemma 3.2 and yields the formula 

(3.79) 

(3.80) 

(3.81) 

We can reiterate this procedure since we are in the same conditions as we were in at the 
beginning of the computation. 



we get from the foregoing considerations 

(3.89) 

Note that YO reduces to the identity matrix when 2m = n 
main lemma of this section, which is the consequence of (3.81) and (3.89): 

Lemma 3.3. If 

d = 0. 'We can state the 

C(<C)~= (;) + u(E ] / (q+" )  (3.90) 

then 

&(<,*, =-Yo (;) + O(&l/(q+Z)) 

for all 0 < 2m < n, where q = maxj,~ ,.... N nj. 

Theorem 2.1 is then a direct consequence of this lemma when we go back from the 
coefficients E(z) in (3.15) to the coefficients c(z) and when we iterate these formulae from 
eigenvalue crossing point to eigenvalue crossing point. We simply have to remember that 
the definition of E(z) depends on the different points zj and that h A ( z j )  = ImA(zl), 
j = 1,. . . , N (see [161). 
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4. Example 

Let us illustrate our result by the following example. We consider 

iE$'(t) = H~(-t)$(-t) (4.1) 
where 

(4.2) 

and we want to compute the transition probability P(E).  The Hamiltonian H&) can be 
considered as a generalization of the familiar Landau-Zener Hamiltonian which possesses no 
complex eigenvalue crossing points in the whole complex plane. hdeed, H&) has analytic 
continuations everywhere in the complex plane except at z = &i where it possesses singular 
branching points and its eigenvalues el&) and em(-t) are identically equal to -1 and 1. 
Moreover H=(-t) does not tend to its limiting values HB(&w) = f P  fast enough. Hence, 
the Hamiltonian H B ( ~ )  does not fit in the framework of our analysis. Nevertheless, we can 
convert the problem (4.1) by a simple change of variables into one to which theorem 2.1 
applies. Let s E JR be defined by 

Then the vector y(s) = $(sinh(s)) satisfies 
s = sinh-'(z) w z = sinh(s). (4.3) 

(4.4) 

The new Hamiltonian H(s)  is now analytic in the whole complex plane and the associated 
function p(s) is given by 

p(s) = 1 + sinhz(s) = cosh2(s). (4.5) 
Thus the eigenvalues 

ej(s) = (-l)jcosh(s) j = 1,2 (4.6) 
display a complex degeneracy of order 1 (i.e. characterized by n = 2, m = 0) at 
ZI = i(4i-r + kx),  k = f l ,  i 2 ,  . . .. Note, however, that H ( s )  diverges as s -+ &ca. but 
this will cause no trouble, as shown below. Let us consider the degeneracy at z1 = k /2 .  

Thus 

cosh(z') dz' = -2sinh(z) A(z1) = -2i (4.7) 

so that the corresponding Stokes lines are given by the set 
[z x + iyl sin(y) cosh(x) = I} (4.8) 

described in figure 3. These lines define the border of the simply connected set Q, which 
does not contain any eigenvalue crossing points in its interior. Consider now the couplings 
a&) between the coefficients cj(z). We compute by means of (3.1) 

(4.9) 

Hence it follows that, although the Hamiltonian H(s) diverges at infinity, the coefficients 
cj(s) possess well defined limits cj(im) as s + *a?, due to the exponentially fast decay 
to zero of the couplings at infinity. This remark insures that P(E) is well defined for this 
problem. Thus we can apply theorem 2.1 to get 

P(&) = e-4/s(2+ 0(~1/4)) (4.10) 
for E small  enough. Note that the exponential decay rate -4 is equal to 2hl,'(elB(Z) - 
em(z))dz, where i is the branching of HB(z) in the upper half plane. 
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t 

Figure 3. The Stokes lines associated dIh 21 = in/2. 

5. Semiclassical context 

We consider the equation 

where p2(x )  = E - V ( x ) .  We assume that V ( x )  is analytic in a strip Sa, that there exist 
V(+co) such that 

for some 01 > 0 and that 

inf E - V ( x )  2 g > 0. 
rslR 

(5.3) 

These assumptions are equivalent to (i)-(iii) in the adiabatic context. The complex turning 
points are the zeros zj of p2(z), z E So, and the Stokes l i e s  are the level lines 

~ A ( z )  = ImA(zj) z E S. (5.4) 

where 

A(z) = - 2 6  p(z’) dz’ (5.5) 

We further assume that (iv) and (vi) hold. LRt us Write the solution of (5.1) as a combination 
of wm solutions 

Then, if the coefficients satisfy the system 
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then the expression (5.6) is a solution of (3.29) (see [8] for example). Consider the boundary 
conditions 

C1(-W) = 0 cz(-co) = 1 (5.8) 
which corresponds to a particule coming from +W. Then the above barrier reflection 
coefficient Rf i )  is defined by the ratio 

(5.9) 

The conditions (5.8) are reversed with respect to the ones we have considered above. 
However, we can take as initial conditions 

c, (-CO) = 1 cz(-m) = 0 (5.10) 
and use the formula 

(5.11) 

instead of (5.9). Indeed, it is readily verified that if (c~(x), c~(x)) is a solution of (5.7) and 
(5.10). then (cz(x), cl(x)) is another solution of (5.7) satisfying (5.8). Finally, it follows 
from this remark that 

lCl(X)12- IC2(X)Iz = K  VX E R  (5.12) 

-- 

where K is a constant determined by the initial conditions. 
Consider a turning point zo which is a zero of order n of E - V(z). Then, 

E - V(z) = r(zo)(z - zoY(l+ O(z -a)) r(zo) # 0. (5.13) 
We compute 

and 

(5.14) 

(5.15) 

Note that the leading term of the couplings p'(z)/2p(z) is never equal to zero in this context. 
We define new coefficients e(x) as in (3.15) and the new variable x by 

hence 

z-ZO=O(@ x)2/(n+2)). (5.17) 
We are thus led to the following comparison equation close to zo 

0 
-c(x) = 

0 
dx d - ( n e-k 

2fn+2> x 

(5.18) 

I . ,  

This equation yields (3.39) again and we can use lemma 3.2 with a0 = -i and m = 0 to 
compute its solution asymptotically. Finally, the error terms in the derivation of (5.18) are 
the same as in the adiabatic context so that the whole asymptotic analysis performed in the 
preceding section holds for this case as well. Hence we have the following theorem. 
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Theorem 5.1. Let V ( x )  be a real analytic potential satisfying conditions (i) to (iv) and (vi) 
and let $ ( x )  be a solution of the Schrodinger equation (5.1). Then, there exist constants 
h* z 0 and p z 0 such that the above barrier reflection coefficient R(h) defined by (5.9) 
and (5.8) is given for any h < A* by 
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